PAIRing Up Cargo Proteins
نویسنده
چکیده
All newly made proteins destined to be secreted from our cells or to function at the cell surface—and many of those that function in membranes within the cell— start their lives in a convoluted heap of membranes within cells called the endoplasmic reticulum (ER). From there, they begin a journey that will take them through the stacked membrane compartments of the Golgi apparatus to their eventual destinations, transported from one compartment to another in small membrane vesicles. Proteins known as cargo receptors often perform the key function of selecting and tethering cargo proteins within the transport vesicles, but only a few such receptors have been identified to date, and which cargo proteins they pair with was mostly unknown. Now, Maya Schuldiner and her colleagues have devised a large-scale approach to discover these pairings between cargo proteins and cargo receptors, laying the groundwork to uncover the mechanisms that underlie this indispensable machinery. The scientists call their approach ‘‘pairing analysis of cargo receptors’’, or PAIRS. They start with yeast strains that have mutations in candidate cargo receptors—proteins that previous studies found were involved in traffic between the ER and the Golgi apparatus. A robotic system then systematically crosses these mutant yeast strains with a collection of other strains, each of which contains a potential cargo protein tagged with green fluorescent protein (GFP). The researchers then use an automated high-throughput microscope to help see which of the resulting strains have retained green fluorescence in the ER due to the cargo protein accumulating in the absence of its functional receptor. This strategy can be used to uncover the receptor for a specific cargo of interest. They also show that this same methodology can be used to identify new cargo proteins for a known cargo receptor. Schuldiner and colleagues mutated nine putative cargo receptors and followed the fates of 157 cargo proteins with their PAIRS technique. Knocking out these receptors affected 31 cargo proteins, 27 of which had not previously been linked to a particular cargo receptor. The spectrum of cargo uncovered for the cargo receptors helped define what specific cargo each receptor recognized. For example, past research hinted that all cargo for the receptor Erv26 were mannosyltransferases that function in the Golgi apparatus, but PAIRS suggests that Erv26 is specific for a subset of this group because the transport of several types of mannosyltransferase out of the ER was not affected by knocking out Erv26. Perhaps the most striking finding was that the cargo receptor Erv14 interacts with a large number of cargo proteins. PAIRS showed that Erv14 is required for the trafficking of about a third of all plasma membrane proteins tested, including proteins with a wide array of functions and structures (permeases, transporters, multidrug transporters, lipid flippases, eisosome components, and proteins linked to cell polarity or cell wall regulation). The numerous cargo proteins identified for Erv14 are all membrane-spanning proteins that reside late in the secretory pathway. Such proteins typically have longer transmembrane domains (TMDs) than other membrane-spanning proteins. When the researchers varied the length of
منابع مشابه
A Systematic Approach to Pair Secretory Cargo Receptors with Their Cargo Suggests a Mechanism for Cargo Selection by Erv14
The endoplasmic reticulum (ER) is the site of synthesis of secreted and membrane proteins. To exit the ER, proteins are packaged into COPII vesicles through direct interaction with the COPII coat or aided by specific cargo receptors. Despite the fundamental role of such cargo receptors in protein traffic, only a few have been identified; their cargo spectrum is unknown and the signals they reco...
متن کاملInfluence of Dielectric Constant on Codon-Anticodon pairing in mRNA and tRNA triplets by Theoretical Studies: Hartree-Fock and Density Functional Theory Calculations.
In this paper we have focused on the dielectric constant effect between various solvents with theoretical modelin the biochemical process. Thereby, AAA, UUU, AAG and UUC triplex sequences have been optimized inwater, methanol, ethanol and DMSO with proposed SCRF Model of theory. The solvation of biomolecules isimportant in molecular biology since numerous processes involve to interacting a prot...
متن کاملDefining the Stoichiometry and Cargo Load of Viral and Bacterial Nanoparticles by Orbitrap Mass Spectrometry
Accurate mass analysis can provide useful information on the stoichiometry and composition of protein-based particles, such as virus-like assemblies. For applications in nanotechnology and medicine, such nanoparticles are loaded with foreign cargos, making accurate mass information essential to define the cargo load. Here, we describe modifications to an Orbitrap mass spectrometer that enable h...
متن کاملIdentification of rice cornichon as a possible cargo receptor for the Golgi-localized sodium transporter OsHKT1;3
Membrane proteins are synthesized and folded in the endoplasmic reticulum (ER), and continue their path to their site of residence along the secretory pathway. The COPII system has been identified as a key player for selecting and directing the fate of membrane and secretory cargo proteins. Selection of cargo proteins within the COPII vesicles is achieved by cargo receptors. The cornichon cargo...
متن کاملAnterograde flow of cargo across the golgi stack potentially mediated via bidirectional "percolating" COPI vesicles.
How do secretory proteins and other cargo targeted to post-Golgi locations traverse the Golgi stack? We report immunoelectron microscopy experiments establishing that a Golgi-restricted SNARE, GOS 28, is present in the same population of COPI vesicles as anterograde cargo marked by vesicular stomatitis virus glycoprotein, but is excluded from the COPI vesicles containing retrograde-targeted car...
متن کامل